

Solar Apartments

Opportunities for deploying PV on multi-occupancy residential buildings

Mike Roberts, CEEM / SPREE, UNSW Sydney

Dr Anna Bruce Associate Professor Iain MacGill

Our task today: *Identify some key findings and policy approaches to highlight in the final report*

- 12:15 1:00 Overview of project findings
- 1:00 1:15 Grab a Sandwich
- 1:15 1:35 Panel Contributions:

Lynne Gallagher : Energy Consumers Australia Chris Byrne : Green Strata Murray Hogarth : Wattwatchers Gareth Huxham : Energy Smart Strata

- 1:35 1:55 Group Discussion
- 1:55 2:00 Summary

Why Solar Apartments?

GHI: Australia: 0.7 – 2.7 MWh/m²/year Sydney: 1.7 MWh/m²/year

2 million solar households (23% penetration, 50% in some areas)

10% of Australians live in 1.4 million apartments / units

Centre for Energy and Environmental Markets

Why Solar Apartments?	Centre for Energy and Environmental Markets
For households	
 Clean electricity Lower bills Increased energy independence 	For society
For networks	 Low cost generation Reduced fossil fuel reliance Reduced CO₂ emissions Energy Equity
 Reduce network demand Generation close to (commercial) load Defer network augmentation 	ds

An opportunity for a clean energy community?

The Solar Opportunity

Based on 3D model of City of Melbourne LGA, with 2 methodologies*

* Roberts, M., J. Copper, and A. Bruce, An analysis of Australian rooftop solar potential on residential buildings, in Asia Pacific Solar Research Conference. 2018: Sydney.

The Solar Opportunity

Roberts, M., J. Copper, and A. Bruce, *An analysis of Australian rooftop solar potential on residential buildings*, in *Asia Pacific Solar Research Conference*. 2018: Sydney.

Rooftop Issues

The Solar Opportunity

Roberts, M., J. Copper, and A. Bruce, *An analysis of Australian rooftop solar potential on residential buildings*, in *Asia Pacific Solar Research Conference*. 2018: Sydney.

Apartment Electricity Loads

Average Energy 41% compared to houses

Average energy per occupant 79% of houses

Higher daily variability

Roberts, M.B., et al., Using PV to help meet common property energy demand in residential apartment buildings. ASSEP. 2016: Sydney.

Aggregating Loads

Greater benefits from aggregating diverse loads

Roberts, M.B., et al., *Cluster-based characterisation of Australian apartment electricity demand and its implications for low-carbon cities*. (under review).

PV Technical Arrangements

Common Property Only (cp_only)

Individual Behind the Meter (btm_i)

Choice rests with each apartment owner

Owner occupier can be investor and beneficiary

> Individual system on common roof - bylaw

Low self-consumption

Landlord / tenant Split incentives

Self-Consumption and Self-Sufficiency

Roberts, M.B., A. Bruce, and I. MacGill, A comparison of arrangements for increasing self-consumption and maximising the value of distributed photovoltaics on apartment buildings (forthcoming)

Embedded Network (EN)

Shared Behind the Meter

Savings for whole building

Case Study W

72 apartments 3 floors Lifts, carparks, etc CP is 22% of load

Case Study K

18 apartments 3 floors CP is 9% of load

Some Generalisations:

- Greatest \$ benefits are from EN & commercial tariffs
- For hi-rise, PV best suited for Common Property
- EN viability is site-dependent
 - PV (1.0 1.5kW/unit) may add value to EN With cost recovery in 10 years (with FiT) or 20 years without
- Shared BTM of 1-1.5kW / unit can also be competitive
- Retrofit EN unlikely to be viable (but PV may help)
- Shared BTM may increase value of PV

Battery Storage (BES) for ENs

Parent Tariff	Control Strategy	
High Demand Charge	Peak Demand Shaving	
No / low Feed-in Tariff	Increase Self Consumption	
High peak / Off-peak Ratio	Demand Shifting	
Individual PV and BES EN, shared PV and BES		

Optimum size	3 – 4 kWh / apartment	~ 1 kWh / apartment
Threshold capex	~ \$750/kWh	~ \$400/kWh

Current Capex ~ \$1000 / kWh BUT:

- Government Incentives (e.g. QLD, VIC, federal ALP...)
- Decreasing Capex?
- Increasing Tariffs
- Potential Network Benefits

Roberts, M.B., A. Bruce, and I. MacGill, *The impact of aggregated battery storage* on photovoltaic self-consumption and customer value in apartment buildings.

(Any questions?)

Some of the barriers

Embedded Network Regulation

- Administrative complexity
- Exemption Framework -> Authorised Retailers
- Small ENO's, Community, Strata squeezed
- VIC: "Abolish Embedded Networks" (but Microgrids)

Embedded Network Costs

- Meter contestability reducing costs, but:
- Unnecessary meter churn
- Meter abolishment charges
- Switchboard upgrades

Finance

• Strata access to finance

Organisational

- Split Incentives
- Communication
- Apathy
- Lack of information

Potential Policy Approaches

Embedded Networks

- Is market access the only solution?
- Is the "Power of Choice" restricting choice?
- Better regulated Embedded Networks:
 - Constraints on developer incentives
 - Meaningful tariff controls
 - Recognition of customer benefit
 - Contract time limits

Metering

- Customer ownership
- Simplify meter transfer

Network Charges

- Cost-reflectivity
- Local Generation Credits

Strata Law

- Sustainability Exemptions (e.g. ACT, QLD)
- Tenant involvement

Incentives

- State & Federal PV / Battery Grants -> Strata Bodies
- Feasibility Grants (every building is different)
- Project Grants

Finance

- Low-cost strata finance for sustainability (not EUAs)
- Rationalise strata tax rules

What are the key findings to highlight in the project report?

What policy approaches would most increase PV deployment on apartment buildings?

What future work is needed in this space?

in 😏 🖓

ASIA-PACIFIC SOLAR RESEARCH CONFERENCE

Key outcomes from discussion

- Apartments don't have the same access to solar as stand alone housing
- Lack of information/motivation, cost/payback/other priorities are key barriers
- Embedded networks are challenging need to work for residents
- Solar enables ENs and vice versa (depending on scale and solar penetration)
- Metering and regulatory issues are barriers to choice despite opportunities presented by DERs
- Tax on revenue is an issue

Policy approaches

- Stop objections within strata organisations from restricting solar
- Need specific policies and support for apartments, community energy
- Removal of strata law barriers

Future work

- Disseminate info and help apartment owners to help decision making (not a role for solar installers). Currently need tailored solutions. Can they self assess, or do they need assistance? Role for user-friendly tools, step by step guide for apartment solar.
- EVs complexities around fleet cars, different business models
- Compare with other options e.g. off-site

